
www.manaraa.com

Paper 42-27

(Web) Software Development: Best Practices for Developing Enterprise Applications
Greg Barnes Nelson, ThotWave Technologies, Cary, NC

Danny Grasse, ThotWave Technologies, Cary, NC

INTRODUCTION

Software development has a rich history that stems from forty plus
years of tried and true practices. From structured programming
models to object-oriented methods, the student is often left to her
own devices to implement code based on a highly creative – and
subjective – design process. In this paper, we will explore some of
the foundations of our software development methodologies and
apply these to web programming for SAS® applications. We will
present coding techniques, lessons learned from our experiences as
architects and experiences proven to be too painful to be ignored.
Examples will include reference to HTML, JavaScript, SAS/IntrNet®,
JavaServer Pages, XML and ODS.

SOFTWARE EXCELLENCE

Despite the fact that software development is inherently a human
endeavor – wrought with highly subjective, highly personalized
notions – we have, as an industry, attempted to measure the
successful programmer through objective measures. Many of these
were born out of government standards in the 1960s ((1990; 1992)).
Since then, we have seen organizations create metrics with which to
measure organizations (e.g., Software Engineering Institute) and
people ((DeMarco 1987)). A relatively recent trend in both software
engineering and project management circles has been the increased
reliance on generic methodologies from both non-profit organizations
(e.g., Project Management Institute) and for-profit companies
specializing in the development of “standards” (e.g., The Gartner
Group).

Methodologies

Many of these methodologies, practices and “process maps” focus
on the way in which we “do” software development – with only the
most general guidance on “how” we might approach the problems
for the practicing programmer. Despite the proliferation of software
for everyday applications – from on-line ordering to medical devices
– many of these approaches rely heavily on “processes”. For
example, in Figure 1 we see the traditional software engineering flow
diagram, which doesn’t prove highly useful when asked how we
might approach the design and development of the actual code.

General Software Engineering

Management
(Process and Operations)

Product Assurance

Requirements
Engineering Design Coding Testing Evolution

Figure 1. Software Engineering Process/ Life Cycle

Similarly, we see traces of these “process” approaches in decision
support applications. Figure 2 shows us a typical “methodology” for
how we might build a data warehouse. Here, the focus is on making
sure that the component parts of the warehouse all have their place
and that there are tools and techniques appropriate to each specific
“component” or box.

A prime example of this approach is one where the methodology
traces to specific processes that are implemented – complete with
tools and technologies (templates) to support the methodology.

Figure 2. Formal Methodologies Combine Approaches with
Tools and Techniques

Principles, Techniques and Practices

From the discussion above, it seems safe to say that some of the
methodologies – whether it is an approach to development like
Rational’s Unified Process or a specific methodology (as in the data
warehousing methodology defined above), we are required as a
developer to know where we are in the process to determine which
process, tool or technique is appropriate. These approaches serve
an important role in software development, but I would argue that
most of these serve the people who manage the projects and are
less important for the people who actually deliver the software –
leaving a relatively large gap between what managers need and want
for organizing a project and the developers who need specific and
tactical best practices for how they might do their jobs.

It is important to note at this point the distinction that exists between
what might be considered a general “principle” of software
development and a specific technique appropriate to a language or
tool. We make no attempt to document the specific techniques in
SAS for building reliable, robust software – but rather cite examples,
which support the general principles that seem to be appropriate
here.

In this paper, we do not intend to focus on a specific methodology,
phase, process, type of software project, nor do we care about the
kind of technology or architecture that is being discussed – but
rather, we focus on concepts that extend beyond the phase or
specific architecture of the software project – that is, the principles
which guide our behavior as developers. Our belief is that if we
focus on specific phases, the developer, if asked to work on an
unfamiliar phase, would be lost without the process map to guide
her. This is a common sense heuristic that not only makes sense,
but also is highly appropriate to web development – where
sometimes decisions in architecture and the interrelatedness of
technologies make it challenging for developers.

SUGI 27 Applications Development

www.manaraa.com

7 PRACTICES FOR EXCELLENT SOFTWARE

Specifically, we will discuss seven practices that transcend phase,
architecture and type of project. These include:

� Orthogonal

� DRY

� Model-View

� Meta-programming

� Automatic

� Test First

� Refactoring

ORTHOGONAL

Orthogonal is a term meaning “at 90-degrees” –
or perpendicular. In geometry, two lines are
orthogonal if they meet at 90 degrees. As we
can see from the Figure on the right, changes in
one axis, have no effect on the other axis.

In software development we might say that something is orthogonal
if you make a change in one part of the system, the change should
have no effect on other parts of the system. For example, we might
have an application that is built on a specific database (say Oracle) –
when a change in the underlying database doesn’t have an effect on
the user interface – that is said to be orthogonal.

Non-orthogonal systems are inherently difficult to change and
control. Seemingly simple fixes have far reaching effects in these
systems and are difficult to test since the impact seems pervasive.

Larry Constantine and Edward Yourdon ((Constantine 1979)) first
introduced the concept of orthogonality in the 1970s in the context of
software development. In this seminal work, they discussed the
concepts of cohesion and coupling as one of the best ways of
measuring the inherent maintainability and adaptability of a software
system. Coupling is a measure of how interrelated two software
components are. Cohesion is a measure of how related the
functions performed by a software component are. We want low
coupling and high cohesion. High coupling (or ‘tight’ coupling)
implies that, when we change a component, changes to other
components are likely. Low cohesion implies difficulty in isolating
the causes of errors or places to adapt to meet new requirements.

Techniques

There are several ways that we as developers can maintain
orthogonality. In general, we do this by keeping our code decoupled.
That is, we write code that has specialized functions. For SAS
programmers, we can do this by writing macros or methods that play
special roles in our code. For example a single macro may be the
only way in which we update a global variable. By hiding the
interfaces – or keeping the code isolated from other components –
we ensure that changes in the way the global variable is instantiated,
changed or destroyed is isolated to this particular macro. It is of
particular importance here to avoid similar functions (macros). In
fact, our goal often is to generalize the macros so that we can avoid
duplication of code (see DRY below).

In SCL applications, we can also keep our code decoupled by
avoiding global environment variables. It is all too easy to allow
global variables to be updated by multiple programs. Avoiding them
altogether helps maintain orthogonal code.

The goal of this principle is simple: Eliminate effects of unrelated
things. By creating code that is independent and self-contained, we
create an environment that is far easier to test and perhaps more
importantly, to implement changes without introducing defects in our
codebase.

Examples

In n-tier applications such as those which have web-based
presentation layers, it is easy to spot non-orthogonal components.
For example, many code walkthroughs unearth ASP (ActiveServer
Pages) or JSP (JavaServer Pages) with complex business logic or
even database access mixed in the HTML (presentation layer).
Later, we will also discuss this concept in the context of Model-View
architecture, however it also demonstrates the idea of orthogonality,
as a simple change in the table structure in our database, would
yield highly unstable interfaces to our user population.

Another subtler example might be in how we architect our
applications – especially in enterprise applications where system
boundaries expose volatilities in the way that we set up our
directories, libraries and external files. Since SAS is one of the most
portable development environments (code can be ported to over 22
operating systems), we need to make sure that any change in our
architecture doesn’t affect the application. We can do this by
planning for portability and scalability in the way that we set our
directory structures up and how we call our autoexec.sas files. We
most often do this through the use of environment variables that
define the host, macro variables that define the high level qualifier of
the directory. Even using simple, reusable macros that define the
hostname can make it easy to split off application logic and database
access across machines.

Finally, for a good example of keeping our code independent from
module to module in the Java world, we look to “properties” files.
Here, code is kept that is usually run-time parameters for the
application (see the section on Meta-programming). “Properties”
files allow code that “drives” applications to be split up so that
developers can work on multiple components without repeating each
other, yet keep the code consistent.

Importance

In general, we want to maintain orthogonality in our applications so
that is it easy to change things, we can reuse code (specific, well
defined responsibilities) and ensure defects are not introduced
because we haven’t done our job at protecting the interfaces
between components in an application. By doing this we can see
marked improvements in efficiency / productivity (localized
development and testing). In addition to being a good development
practice, we also tend to reduce our risks as problems are isolated;
they are less susceptible to defects, we achieve better results
(easier to test) and they tend to be more portable (between
languages, vendors, products, etc.)

DRY (DON’T REPEAT YOURSELF)

Software development’s “holy grail” is reusability. Often times, we
fall short of this goal because of changes in technology, shifting
opinion about approaches and even our own maturity as developers
lead us to improve – and drastically change – our code. One of the
dangers of this “continual improvement” is that in an effort to do
things better, we often find ourselves duplicating information. The
principle of DRY – or Don’t Repeat Yourself – is seen in code for a
variety of reasons. As Hunt and Thomas describe ((Hunt)),
developers tend to repeat themselves for a variety of reasons –
legitimate or otherwise:

Imposed duplication. Developers feel like they have no
choice. Because of process issues, imposed standards,
multiple platforms, or languages seem to require “copies” of
code.

Inadvertent duplication. Developers don’t realize that they
are duplicating information. Often times this is caused by
incomplete information, lack of code walkthroughs or even poor
design on the part of developers.

Impatient duplication. Sometimes it is just easier to duplicate
code, rather than refactoring or waiting on other developers to
coordinate the shared information.

SUGI 27 Applications Development

www.manaraa.com

Interdeveloper duplication. Perhaps the most common type
of duplication occurs when multiple developers are working on
the same system and little attention is paid to managing the
code library.

Techniques

As discussed above, the better we isolate the dependencies among
code, the chances are that we can and should be able to use these
generalized routines again. In SAS we have SCL methods and Base
macros; in Java, we have methods (JSP Scriptlets and custom tags)
and classes that promote reuse.

There are several non-technical approaches that may also prove
useful when any of the reasons that we cited above characterize our
code. For example, a simple, but effective way to track duplicate
code - whether imposed or impatient) is simply to maintain a
developer’s notebook that logs known developer “issues”. This
surfaces the duplication early (while the duplication is occurring) and
is more likely to be address when refactoring occurs since it has
been noted.

In addition, two other techniques make it easier to catch duplication
due to inter-developer or inadvertent duplication. These include
appointing a librarian that is responsible to cataloguing all code (from
a functional perspective) as well as diligent code walk-through
sessions ((Yourdon 1979)). Each serves an important reminder for
the developer through the development cycle to be mindful of the
fact that software development is a highly collaborative effort, not
one merely a result of acts of heroism. Finally, it should be noted
that if duplication is a result of “standards”, these standards should
be reviewed for reasonableness.

Examples

In SAS, it is easy to come up with clear examples of how we can
prevent duplication in our systems with good design principles. For
example, pretty much every SAS programmer I know has developed
or at least utilized small utility programs or macros that do very
specialized things. Checking the number of observations before a
critical step or for the existence of a macro variable before one
changes it, are things that we do often enough to require good code
libraries. Often overlooked, these cataloging efforts can trim several
hours, if not days off of a project.

Another example that is often overlooked is the calculation of a
business rule. In a large system – especially with data warehousing
applications that segment responsibility from extract, transformation,
load and somewhere down the line, exploitation, we may need to
utilize a calculation. Deciding where this occurs and how the code is
implemented in different languages (PL/SQL versus SAS macros
versus Java) can introduce similar functions across step
boundaries. There is not much the programmer can do to avoid ALL
of these, however, where we implement a business rule/ calculation
in the same language (e.g., SAS macros), we can take advantage of
recent improvements such as Stored Processes and the Java APIs
now available to us.

Importance

Although the importance of DRY is probably clear to the reader by
this point, it is worth noting that if we make it easy for code to be
reused, it is more likely that it will be. If we can reuse code – we are
reusing knowledge and it will be much easier to test, to maintain and
to extend.

MODEL-VIEW (MVC)

In an earlier paper ([Barnes Nelson, 1999 #46]), Barnes Nelson
discusses how SAS applications can take advantage of the Model-
View approach. We reference that here, as some of this content
has been adapted from that paper.

The concept of Model-Viewer-Controller (MVC) originated in the late
1970’s at Xerox PARC to support the Smalltalk-80 object-oriented

programming interface ((Simon 1995)). It is used as a framework to
help us understand and implement graphical user interfaces (GUI)
and has been reused to varying degrees in other programming
languages ((Gamma 1995)).

Model-View-Controller (MVC) or, as it is often referred to -- Model-
View, is a way of developing applications whose primary purpose is
to provide a clear separation between the presentation of the GUI,
the application logic and data. This is the essence of the MVC
paradigm.

As we get closer to realizing this separation in our applications, we
get closer to the pure goal in Object-Oriented Programming:
reusability. By building applications that are independent of the data,
we can attach our model to new data without rewriting the code. By
assigning responsibility to the Model, the Viewer and the Controller
we take the tasks of modeling the external world, the visual feedback
and user input respectively. In most discussions of MVC, the
Viewer and the Controller are tightly coupled and often the latter gets
dropped in favor of the Model-View perspective instead.
Regardless, we see the clear separation of the areas of
responsibilities for the application framework.

In a nutshell, Model-View allows us to develop or focus on
independent, well-organized modules. We essentially distinguish
between how something is displayed (presentation), from where it
came from (database), and the business rules applied (application
logic) to the data prior to presentation.

Techniques

The way that we think about the separation of the three layers in the
application helps ensure that we adhere to this approach to software
development. The web environment gives us a readily
understandable example.

Mixing Logic and Presentation is Easy (too easy!)

In JavaServer Pages (JSP), ActiveServer Pages (ASP) or even
SAS/IntrNet, we have to pay specific attention to making sure that
we don’t violate this principle. Often the business logic is tied with
how we present content. For example, the following JSP code
absolutely violates this rule by tying what rows are returned from the
dataset along side the code that writes the HTML.

<%!-- START BAD EXAMPLE --%>

<table>

<%

int patientColIndex =
dataSetInfoInterface.getVariableIndex("patient");

int dateColIndex =
dataSetInfoInterface.getVariableIndex("date");

int BPColIndex =
dataSetInfoInterface.getVariableIndex("BP");

String currentPatient = "";

int numRows = dataSetInterface.countRows (0);

for (int i = 1; i <= numRows; i++) //iterate
through the rows

{

String patient =
((String)dataSetInterface.getCell (i,
patientColIndex)).trim ();

if (!patient.equals (currentPatient))

{

currentPatient = patient;

%>

<tr>

<td><%=patient %></td>

<td colspan='2'> </td>

</tr>

SUGI 27 Applications Development

www.manaraa.com

<%

}

String date = dataSetInterface.getFormattedCell
(i, dateColIndex).trim();

String BP = ((String)dataSetInterface.getCell (i,
BPColIndex)).trim ();

%>

<tr>

<td> </td>

<td><%=date %></td>

<td><%=BP %></td>

</tr>

<%

}

%>

</table>

<%!-- END BAD EXAMPLE --%>

A cleaner approach is the following code, where we simply call the
method that retrieves the rows when we need it, but has an
independent coupling with the presentation. We can say that
something is loosely coupled or independent when published or
approved “interfaces” protect code from leaking into one another.

<%!-- START BETTER EXAMPLE --%>

<table>

<%

Iterator patientList =
dataRetrieverObject.getPatients ();

while (patientList.hasNext ())

{

Patient patient = (Patient)patientList.next ();

%>

<tr>

<td><%=patient.getName () %></td>

<td colspan='2'> </td>

</tr>

<%

Iterator dataList = patient.getDataList ();

while (dataList.hasNext ())

{

// using a Map here allows for data to be
added

// to Patient object by dataRetrieverObject

// AND extracted by jsp code

// without changing the Patient class API

Map patientData = (Map)dataList.next ();

%>

<tr>

<td> </td>

<td><%=patientData.get ("data") %></td>

<td><%=patientData.get ("BP") %></td>

</tr>

<%

}

}

%>

</table>

<%!-- END BETTER EXAMPLE --%>

Where Should Formatted Variables be Formatted?

A second, but less confident example includes where and how we

format data. Specifically, let’s say that we are required to format a
number as Dollar12.2 (dollar signs, commas and 2 numbers to the
right of the decimal sign). It isn’t always clear where the formatting
of that variable should occur. For example, we could change the
format in the SAS dataset and have that flow through to all reporting
and end-user applications. That way, you don’t have to change it in
every application and global changes are easy.

On the other hand, formatting of the variable when it’s being
presented makes good, logical sense. Formatting is a presentation
task anyway, right?

Like most things in SAS, there is multiple ways to approach any one
problem. Let’s look at the possible scenarios and their pros and
cons.

Location of
Logic

Benefits Drawbacks

Database layer
(SAS dataset)

� Use the metadata
in the data to drive
applications.

� Changes in
downstream
applications (e.g.,
reporting) can be
made globally.

� Multiple
consumers of data
can see the data
the same way.

� The client can
always apply
another format.

� Databases may
change and the
resulting
metadata may not
have the same
features.

� Database changes
may be too
pervasive.

� There may not be
a global standard
of how something
should be stored
(and
subsequently
presented).

Business Logic
(SAS Macro or
Java servlet)

� Business logic
about how a
variable is
calculated is close
to how it is sent to
the client (easier
for a single
programmer to
handle).

� Impact on
database changes
is reduced.

� May not be
obvious that the
logic about what
is being presented
is not in the
“view”.

� Changes in the
viewer may
override its
effects (DRY).

Presentation
Layer (JSP
code)

� Changes in how a
variable
“performs” in
multiple reports
can be localized.

� Have complete
control over how
something will
look as it is
presented.

� Reduce
dependency on
database.

� Global changes
are difficult to
manage since
each “report” has
to be touched.

� Data driven
applications are
easier to
maintain.

� Ties presentation
interface too
closely with
specific
“variables”.

But as our dear friend Jack says, “there is always a right thing to do”.
You just have to understand the tradeoffs at play and what the
relative importance of the benefits and the drawbacks. From a
purist’s perspective, I guess we would have to argue that any
presentation characteristic should be managed at the viewer. Good
thing we aren’t always that myopic.

XML for the Web – Model-View at its Best

The final example we show will make you marvel (ok, it worked for
us.) Perhaps one of the cleanest examples of Model-View that we
have seen involves using XML to deliver data and XSL to present the

SUGI 27 Applications Development

www.manaraa.com

data. In a related paper ((Barnes Nelson 2000)), we introduced XML
in the context of SAS applications. Here, we showed an example of
how you can take a data, process it with SAS (macro) and deliver
the XML to the client. From there, XSL takes over and formats it as
an HTML table that can be sorted on the client.

We’ve seen no better example of the separation of the model from
the viewer than this. If, for example, we wanted to change the way it
looked, we need only change the XSL. If we wanted to restrict the
data, make a change to the calculations or change the content of the
table, we do that in the model.

Importance

Clearly, this approach gives us some specific, tangible benefits.
These include faster development, higher quality output, easier
maintenance, reduced costs, increased scalability, better information
structures and increased adaptability. Some of these benefits are
difficult to measure, with that said, in our simple examples we have
shown the following benefits.

View independence: multiple presentations can be built
(HTML, WML, PDF) as different views on the same underlying
business logic and data structures.

Model independence: Allows developers to change and
evolve data structures or file formats without changing how the
data is displayed or processed in the rest of the program, as
well as introduce persistence, remote databases, and sharing.

Reusable logic: Once implemented, different presenters can
reuse these in multiple applications (e.g., XML can be reused
for wireless devices).

Perhaps most important is that from a personnel perspective, we
can reposition our current SAS programming staff to take advantage
of this new technology without having to relearn WML, Java or .NET.
We allow the development of new viewers on top of our existing
investment in these applications.

META-PROGRAMMING

Out of all of the languages that we have seen, SAS seems to
support the concept of meta-programming best. Of course, those
with a deeper appreciation of non-SAS languages would argue
fiercely, but I would posit that SAS has built the languages with that
concept in mind – and expect developers to use it.

Meta-programming is a principle which calls for removing all of the
details in the code and moving that to something the code can look
for when it needs it. Some people do this through data-driven
applications (such as a lookup table); others do this through
exploiting the SQL dictionary tables to query known information
about tables; and good programmers do this with symbols (macros)
and formats.

Metadata-driven applications look for the code to be generalized and
the specific details to be something we supply just in time. A good
example is in the simple IF-THEN statement. Instead of providing
the conditions and the action in the code, we can look for the
conditions in the data – along with what to do with them.

Another example in web applications that rely on SAS for compute
services is the “autoexec” file. We learned a long time ago that you
should never place “hard-coded” values in your code that make it
non-portable or non-extensible. If we isolate the dependencies (host
specific information like paths or things that can be gleaned from the
environment itself), then we stand a better chance to reuse and
extend the application when the time comes.

In the Java world, we often see this principle expressed in the form
of a properties file or some XML-based configuration file. These
contain configuration or run-time options that would otherwise be
changed in the code (and require a re-compile).

As Hunt and Thomas suggest – “put abstractions in the code,
details in the metadata” – which helps us plan for change. ((Hunt)).

Importance

It may seem obvious that the reason we do this is so that we can
anticipate change – especially when it comes to data – which we all
know does often. Requirements change and it’s often easier to
make change happen at the interfaces (metadata) rather than having
to touch the code. We often say of our applications when asked if
the data can be displayed “it’s just a matter of getting the right data,
the code’s already in place.”

AUTOMATIC

“Some of the laziest programmers write the best code!”

You’ve probably heard that sentiment expressed as it pretty
accurately relays the concept of writing code so that it does all of the
hard work for you. We remember when we had to write a series of
PROC PRINTs for every dataset in a library. Having to copy and
paste all of the code and changing the MEMBER name for each
dataset got tedious. Ah, the beauty of macros!

But the principle of automation goes well beyond satisfying the
needs of the lazy. It has to do with making sure that someone can
accurately and reliably reproduce the task at hand. Running a job
that updates the data warehouse exactly a 2:00 a.m. GMT is much
easier to achieve through automation rather than setting the alarm
clock.

This principle extends through just about every aspect of software
development that we can think of: setting up the workstations that
we use to develop on, creating the server libraries, automating the
backups, documenting our code and even building our test scripts.
The challenge with automation is knowing when it’s worth the
trouble. For example, writing code that takes days to write to
automate a task that is seldom used would be an exercise in egoism.
Similarly, things that we do every day for years on end that no one
ever seems to pay much attention to make for likely candidates –
especially when they can reduce human error.

Build a Macro that Calls a Macro

We once wrote a macro that took a dataset and a macro name as its
parameters. Its job was to loop through the variables and the
observations and build separate calls to another macro. The
variables in the dataset were simply the parameters that were used
in the macro and the observations represented the number of unique
ways that we wanted to call the macro. This may seem overly
complicated – why not call the macro in the code itself? The reason
for us is that we didn’t know how many times we needed to call it – it
was data driven (in our case, members in a library). Little did we
know then that we would be using that tool now in just about every
application we build – 12 years later!

Java docs and other shell tricks

Documentation seems to be one of the very last things we do as
developers. Relegated to the final hour, it often goes undone and
short of the mark (i.e., creating shared understanding of the function
and form). Java has one of the best models for documentation –
build it as you go. By commenting code in specific ways, the
JAVADOC tool allows you to create HTML based documentation,
complete with hyperlinks, dependencies among classes, fully
documented methods, etc.

Of course, one could argue that in SAS there are too many different
language elements to support (major PROCs, DATA Step) and even
different underlying languages (Base, Macro, SQL, SCL). Clearly
you have to understand where the biggest bang for your buck is
going to lie. For SCL based applications, Qualex Consulting has
provided us with a tool to help document our code and datasets. But
for Macros, SQL and other “base” language elements, we are left to
achieve our own standards in documentation.

For a poor-man’s version of the JAVADOC tool that is relevant to
SAS applications we look to good text processing tools like awk and
sed (UNIX geek tools). We developed a program using awk several

SUGI 27 Applications Development

www.manaraa.com

years ago to parse a text file (.sas file) and generate documentation
based on pattern recognition. Here we simply looked for the most
typical in-line commenting patterns:

*…; single line comments

/* … */ block comments

%* ..; for macro style comments

Based on these patterns, awk would parse the files and generate
text files ready for inclusion in our developer’s notes.

Of course, automation in web development can be seen in other
places – these include code generation (macros); HTML generation
(SAS/IntrNet, SCL, Macros, JSP, ASP, XSL, etc.); configuration
management (generation scripts); and as we will explore in the next
section: automatic testing.

TEST-FIRST

If documentation is relegated to the last possible moment, testing
often never occurs – or occurs only in the hands of users. We posit
here that if you make it easy for people to test, they will be more likely
to actually do it. One method that we learned from the XP world
(eXtreme Programming) is the concept of Test—First. In their view,
you write a test case to prove the code does what it is supposed to
do. For example, if we write a simple macro that reads a dataset,
calculates a new variable and then writes the new variable out to
memory as an array of macro variables (one for each observation in
the dataset), we would build the test case iteratively:

Step 1. Confirm the dataset is valid (exists and has >0 observations;
constraints on variable types, libraries, etc.)

Step 2. Read the dataset and confirm the required variables for the
calculation have valid constraints (non-missing, all signed
appropriately, valid ranges, intra- and inter-variable dependencies)

Step 3. Create the variable of interest and validate the expected
value (non-zero, non-missing, range, etc.)

Step 4. Create the resultant macro array and validate

The number of observations in the dataset equals the number of
newly create macro variables (dictionary tables can verify this)

Create a temporary dataset to hold the values from the data step and
do a compare against the SQL output (SQL gives us an easy way to
write an array of macro values)

Create a macro symbol that contains the number of macros we
should find and compare against the number of observations in the
dataset.

All of these steps are fairly trivial in and of themselves. But seldom
have we seen someone actually think through the process of what
should be tested (except for regulated applications like FDA
submissions in Pharmaceutical applications). If followed, this
process not only leads to better software and better requirements
definition, but also should save considerable time and effort as we
don’t write any code until the test cases have been written. We
would also argue that having to write these test cases once, you
would soon establish very good libraries or reusable tests (we hate to
write code twice if we ever think we will need to write the code
again).

Moreover, if the tests are written first, then any change that occurs
with the code can automatically be checked against the
requirements because the requirements drive the test cases. It is
full-circle development. After all, if you make it easy for developers to
test – they will.

Techniques

Here, we can summarize the Test-First principle in the following
way:

Test first. Test often. Test automatically. Write tests to
prove the requirement, then the code. Now that the test is
written, include this as part of the code (Debug=Y) so that it

gets run every time a code change is made.

Test against your contract. Macros and methods both have
the advantage of a “published and approved” interface. These
interfaces serve as the gateway to the code. Validate the
interfaces and your code will serve you a long time.

Design to Test. By building your code in such a way that
makes it easy to test, you make it easy for the development
staff to actually do the testing.

Unit test in the code. Similarly, creating code that allows
return codes in the logs and applications specific ERROR or
WARNING indicators in the LOG, the developer let’s every one
know what the code is doing.

Functional / User Acceptance. Because we write our code
based on a test case and test cases are written against
requirements, we should have code contracts in place with the
end users – or those that create requirements. Functional and
user acceptance testing is a necessary, but not sufficient
requirement for good code.

Stress/ Load Test. Finally, although it’s not always known at
the time the code is written, you should always stress test your
code against unrealistically high volumes of data and/or users.
This tells the user community what the valid constraints on your
application might be – before your code breaks. Recently, our
experience with this saved us a very potentially embarrassing
situation with a client. By understanding what the load patterns
were on a web application, we were able to refactor the
connections to SAS (from Java) to improve performance.

Importance

Although we are not sure where the saying came from, the following
certainly seems true of our experience:

It costs a lot less to fix a defect or bug in requirements or design that
it does if the users find it. (Not to mention the political side-effects!)

Location of Fix Cost

Requirements definition $1.00

Technical Design $10.00

Coding (Implementation) $100.00

Integration or System Test $1,000.00

End User (Production) $10,000.00

Remember, if you will, the story of Babe Ruth pointing to the right
field wall in the 1932 World Series and “calling his shot”. What
comes to mind for us is that fact that Babe knew where he was
going. Like software requirements, the test-first principle helps us
see where we need to go. After all, if you know where you want to
go, you stand a better chance of getting there.

REFACTORING

Despite your best efforts at writing good code, making sure that the
requirements were met, automating those tasks around you which
potentially introduced errors or bugs, we often have to go back to the
drawing board and rewrite, rework and re-architect the code. This
healthy endeavor, which leads to better practices and better
software, is known as “refactoring”. Writing software is an organic
process – replete with our propensity for error. However, there are a
lot of reasons why we might go back to the drawing board and take a
second or third look at our code. As Hunt and Thomas describe
((Hunt)), there are a number of things that force us to refactor:

Duplication. We’ve inadvertently, or otherwise, introduced
duplication in our system.

Non-orthogonal design. We have implemented code that is

SUGI 27 Applications Development

www.manaraa.com

too pervasive making it difficult to change.

Outdated knowledge. We simply know more that we did
when we started.

Performance. Often we find that our code just doesn’t
perform as it should.

Refactoring is the process of revisiting earlier decisions – whether
they be architectural, design, relationships between classes or
whatever – and retooling the code so that it performs better, is easier
to maintain and defect free. Except for the performance issue
mentioned above, no one is likely to notice the fruits of your
refactoring efforts except other developers. A cautionary tale here is
that make sure that the effort to refactor makes sense. Having been
a developer for many years and managing even longer, we find
ourselves taking the code away – or in my own case, having it ripped
away – as we plead “but it’s just not ready yet, we have one more
thing to do”. Since developing software is an inherently organic
process sometimes we just have to say that we have done our best
with the information we had at the time.

Techniques

The best tips on how to refactor come to us from Martin Fowlers
seminal work on Refactoring. Here, he describes three very simple
tips:

1. Don’t try to refactor and add functionality at the same
time. It may seem like a good idea to wait until some
piece of new functionality to revisit that code you’ve
wanted to touch, but try and resist. Make a special effort
to fix it without having too many moving parts at once.
One practical piece of advise here is to make sure that the
planned functionality doesn’t change the underpinnings of
your code so dramatically so as to waste time or money.

2. Make sure that you have good tests before you begin to
refactor. As mentioned above, if we follow the test-first
principle, we should be ahead of the game here. By
having good tests that produce reliable results, you’ll know
soon enough if your refactoring has introduced defects.

3. Take short, deliberate steps. Here Fowler describes
examples primarily from object-oriented languages (C++
and Java), but the extension is SAS is obvious: don’t try
to change everything at once! If you want to move
something from an IF-THEN block to a dataset, read the
dataset, validate the variables,and get the unique values
before ever trying to take out the IF-THEN statements.
Slow, deliberate changes will be easier to back out if you
have a problem.

Examples

In web programming, we have come across several examples that
we think are good lessons for us. The first really has to do with
extending a piece of code for something that was not intended and
the second illustrates how we interpret changes to a system so that
we can anticipate future changes.

Client versus Server Processing

Something that is not always obvious in any application is where
something should take place – the client or the server. An example
that comes to mind is being able to sort an HTML table on the client
(Browser) without repeat visits back to the server. After heated
discussions about who should be doing the work, we thought the
tradeoffs of scalability and ease of use (for the end user) outweighed
the potential downsides (complexity for the developer).

In this application, we wanted to be able to sort the data on the client
by having the end user click on a column heading. By allowing for
the sorting to occur on the client, the response time would be much
faster and the user could “play” with their data in a more real-time
fashion (than is typically doable on the web). Having successfully

implemented this code for said application, we thought we
understood the tradeoffs and by using XML and XSL, we achieved
what we intended and the client was happy.

Soon thereafter, we were designing a similar application and decided
to use the same approach. Once we loaded real data into the
application, we found a dismal discovery: it was slow! The
difference: Application 1 always had less than 500 rows in the table;
Application 2 usually had more than 2000 rows. The discovery
forced us to refactor. Since XSL as a technology was terribly slow,
we had to rethink how we were going to solve the problem. After all –
the expectation had been set with the end users, they would get
client-side sorting. The refactoring effort took us down several paths
including more XML, HTML with JavaScript events and even the
dreadful realization that we might have to go back to server-side
sorts. Fortunately, one of the authors developed an object-oriented
solution that performed beautifully. Even with 10,000 rows, we could
sort in less than 3 seconds – which was our performance
benchmark.

Designing for growth (or unintended uses)

In the above example, the code was completed and then we tried to
use it in a second application. There, it wasn’t so much of a problem
that we wanted to use it for something that was unintended, but we
didn’t know the limits of the code. Our second example takes us to a
common data set design problem – do we make our data fat and
short (lots of variables – one for each unit of measure), or do we
make it long and skinny (turn our variables of interest into one
variable and have a class variable that defines the observation). A
common example follows.

Suppose we have a dataset that contains the following variables:

Date Date of Visit MMDDYY6.

Patient Patient ID Char4.

BP Blood Pressure 8.

Our application uses the information from the variables to populate a
list box on a HTML form (a list box for the analytic variables only).

Then along comes a request to add heart rate to the table. Normally,
adding a column to the table would satisfy these requests. Often, it
is important to think about the implications of the request – “if I
simply add a column, then I have to go into the HTML and add some
code around getting the Heart Rate into a list box as well. The code
is tightly coupled with the data.

Instead, we would argue that this request should be analyzed for
potential refactoring. If we were to turn the dataset on its side and
have the unit of observation become Date, Patient and Variable Type
(versus Date and Patient), then we can automatically build the list
boxes directly from the Variable Type column.

We are not suggesting that this is the appropriate design decision
for all applications – that would be categorically wrong. In this
example, the benefit of having the unit of observation be Date and
Patient is that if I wanted to know anything about the patient, I would
simply have the look at one row per date, which would make
processing easier for reporting. Knowing which design is
appropriate and the tradeoffs become crucial to a developer’s skill
set.

Importance

Refactoring helps us look at code through a critical eye. We revisit
previous decisions so that we can improve the code for performance
reasons as well as readability and to make it easier to test.
Refactoring isn’t a stage in the project plan; it is part of the
development life cycle. Once again, one of our favorite tools in our
arsenal is simply the code-walkthrough sessions and developer

SUGI 27 Applications Development

www.manaraa.com

notes. By documenting as we go, known deficiencies and peer
comments, we make better software. Just remember what it says on
the shampoo bottle: lather, rinse, and repeat.

CONCLUSION

The following statement, lifted from an email, sums up this paper
better than we can:

The four R's as defined by Jack.

Reasonable - Is the application, program, or module
reasonable? That is, does it produce results that are
reasonable in the context in which it is used?

Reproducible - Are the results reproducible? That is, when
the application, program, or module is run multiple times with
the same input, will it result in the same results?

Reliable - Is the application, program, or module reliable?
That is, can a user of the object expect it to be available and
work as advertised?

Robust - Is the application, program, or module robust? That
is, will the object continue to work under conditions beyond the
original specifications?

Things that satisfy all four of these R's are truly world class.

ACKNOWLEDGMENTS

The author would like to sincerely thank several people for their
guidance and thoughtful review of this manuscript. Specifically, we
would like to thank Jack Shoemaker, Jeff Wright, John Leveille for
showing us how to build world-class software and to Dave Hamilton
for his gentle review of this paper. In addition, two of the most
influential sources for inspiration have been my long-time friend and
mentor – Ian Whitlock as well as the published works of Andy Hunt,
Dave Thomas and Fred Brooks.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Please
feel free to contact the author at:

Greg Barnes Nelson

greg@thotwave.com

117 Edinburgh South

Suite 202

Cary, NC 27511

919.465.0322 - Phone

919.465.0323 - Fax

BIBLIOGRAPHY

Barnes Nelson, G. (2000). XML and SAS: An Advanced Tutorial.
SAS Users Group International, Indianapolis, IN, SAS Institute.

Constantine, L. a. Y., E. (1979). Structured Design. Englewood
Cliffs, N.J., Prentice Hall.

DeMarco, T. a. L., Timothy (1987). Peopleware: Productive Projects
and Teams. New York, Dorset House.

Gamma, E., et al. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA, Addison-Wesley.

Hunt, A. a. T., David The Pragmatic Programmer.

NASA (1990). Manager's Handbook for Software Development,
Revision 1. Greenbelt, Maryland, Goddard Space Flight Center,
NASA.

NASA (1992). Recommended Approach to Software Development,
Revision 3. Greenbelt, Maryland, NASA Goddard Space Flight
Center, NASA.

Simon, L. (1995). The Art and Science of Smalltalk: An Introduction
to Object-Oriented Programming Using VisualWorks. London, UK,
Prentice-Hall.

Yourdon, E. (1979). Structured walkthroughs. Englewood Cliffs,
N.J., Prentice-Hall.

SUGI 27 Applications Development

	SUGI 27 Title Page

	trdmk42-27: SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

